
QuickHash GUI

V2.6.3

The Free, Graphical, Cross-Platform,

Data Hashing Tool

User Manual : v1.0.2 (March 2015)

Copyright (c) 2011-2015 Ted Smith

All rights reserved

https://sourceforge.net/projects/quickhash

https://sourceforge.net/projects/quickhash

1.0 Pre-amble

This manual is designed as a user-aid only. It is not an authority on the subject matter of hashing

algorithms, filesystems or anything else, neither in part or in full. The software comes without any

warranty. Use it at your own risk and if unsure, please consider cross referencing findings with

other software.

1.1 License Agreement

There are no restrictions. Users can run it on as many computers as they wish, as many times as

they wish, for as long as they wish. There are no dongles, no DLL's, no installation wizards or

license files – just click and go. All that is asked of the users is that they share their thoughts and

help contribute ideas back to the developer (tedsmith28@yahoo.co.uk).

Constructive feedback is encouraged and welcomed but complaints will not be tolerated. If the user

is unhappy with the software, s/he is encouraged to use something else.

Supported Platforms: Tested on Microsoft Windows (XP, Vista, 7), Linux Mint 16 and 17, Apple

Mac Yosemite.

1.2 Acknowledgements

QuickHash is written and compiled using the Lazarus Project IDE and the Freepascal language

using the Freepascal Compiler. Thanks are therefore expressed to the developers and contributors of

both Lazarus and FPC, without which QuickHash would not have existed.

1.3 Development Team

Lead Developer: Ted Smith

Contact: https://sourceforge.net/projects/quickhash – see support pages and

ticket system for feature requests and suggestions

QuickHash GUI User Manual (c) 2011 - 2015 Page 3 of 18

https://sourceforge.net/projects/quickhash
http://www.freepascal.org/
http://www.lazarus.freepascal.org/

2.0 Introduction

QuickHash is quite simply a free, open source, cross platform, fast and easy-to-use data hashing

tool for Microsoft Windows, Dekstop GNU/Linux distributions and Apple Mac.

It does not require installation and can simply be executed from a USB drive or other removable

device (though on Linux, the software has to have executable permissions assigned and the external

device would require a filesystem that can store executable permissions – so EXT4 or something

and not FAT32).

Four mainstream hashing algorithms are available – MD5, SHA-1, SHA256 and SHA512.

The interface is deliberately simple and comes as a tabbed system – each tab for a different type of

data.

Text | File | FileS | Copy | Compare Two Files | Compare Directories | Disks

2.1 What is a hash?

The simplest explanation is that it is like a unique fingerprint of digital data. There are many

common hash algorithms, but QuickHash is coded to utilise four of the common ones : MD5, SHA-

1, SHA256 and SHA512. Very basically, if you compute the MD5 value of your typed name, the

result is theoretically unique to one in 3.4028...E38, which, put more simply is one in 340 billion,

billion, billion, billion (1 undecillion) meaning that the chances of any other digital data other than

that string of characters generating the same hash are infinitely unlikely (engineered collisions

aside).

QuickHash GUI User Manual (c) 2011 - 2015 Page 4 of 18

Illustration 1: The tabbed interface of Quickhash

http://en.wikipedia.org/wiki/SHA-2
http://en.wikipedia.org/wiki/SHA-2
http://en.wikipedia.org/wiki/SHA-1
http://en.wikipedia.org/wiki/SHA-1
http://en.wikipedia.org/wiki/MD5

The research surrounding hash collisions is duly noted and the reader can find more information

about that in publications and articles on the Internet or academic papers, if it is a concern to his\her

work area.

QuickHash adopts Merkle–Damgård constructions which theoretically enables a method of building

collision-resistant cryptographic hash functions. More can be read about that online.

2.2 Cross Platform

QuickHash was originally designed for Linux to enable less advanced Linux users to easily and

quickly generate a list of hash values for files using a simple graphical interface without having to

resort to command line tools like SHA1SUM. It was specifically designed to run with live boot

CD's like DEFT, CAINE, PALLADIN, HELIX and others. However, over time, the hashing

functions have improved and indeed now become faster at generating hash values than many other

tools – both free and commercial. So it is now not only a tool that enables the quick selection of

files to hash, but it is also a tool that does compute the hashes quickly. So the name “QuickHash” is

really rather fitting.

It is pre-built into the DEFT and CAINE Linux CD's, so by downloading them you will have the

power of QuickHash built in to your live CD instance without having to use it separately.

In addition to the Linux version, due to demand from Windows users, a Microsoft Windows

compatible version was made and sports some features that are necessary in a Windows

environment but not necessary in a Linux one. For example, it is possible to compute the hash of a

physical disk using QuickHash in Linux by running QuickHash as root, clicking the “File” tab

and navigating to /dev/sdX or /dev/sdXX. But in Windows, it is not possible to select a disk

in that way, so a special disk hashing tab exists in the Windows version, but not the Linux or Apple

versions.

An Apple Mac version was then developed and first appeared with version 2.5.3 in 2014. It

functions in a similar vein to the Linux version. The Mac version was compiled on the Yosemite

operating system, so older Mac's with Power PC systems may not run QuickHash successfully – not

QuickHash GUI User Manual (c) 2011 - 2015 Page 5 of 18

http://www.caine-live.net/
http://www.deftlinux.net/
http://csrc.nist.gov/groups/ST/hash/documents/Puniya_hashDesign.pdf
http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Hash_collision.html

tested.

3.0 Interface

Tabs Explained – Quick Summary

Text : For hashing chunks of text like paragraphs from a file, a name, a character string, or key data

that can be copied from somewhere to QuickHash

File : For selecting and then hashing one individual file (and disks in Linux\Apple Mac).

FileS : For hashing multiple files in a directory (aka 'folder') recursively.

Copy : Copy & Paste essentially, but with some added forensic integrity. Designed to enable a user

to copy files from one place to another but have the copy process verified and supported by hash

values and a retained log of the original date and time attributes.

Compare Two Files : Simply choose two files in two different locations and have the hashes of

both compared automatically.

Compare Directories : For comparing the file content of one directory to another to see if all the

files inside each match, or not.

Disks : Only available in Windows and designed for MS Windows to be able to easily hash entire

physical disks (as of v2.4.0 upwards).

QuickHash GUI User Manual (c) 2011 - 2015 Page 6 of 18

3.1 Tabs Explained – Detailed Explanation

3.1.1 Text : For hashing chunks of text like paragraphs or key data that can be copied from

somewhere to QuickHash. You can also type in the text box and QuickHash will dynamically

recompute the hash value as you type. The user can also switch the generated hash to one computed

by another algorithm simply by clicking one of the other three radio buttons.

As of v2.6.2, an “Expected Hash Value” field allows the user to paste an existing hash value

(perhaps computed by another tool) and QuickHash will compare the generated hash of the inputted

text segment against the one supplied by the user. An alert will be displayed if the hashes do not

match. To cancel the comparison, replace the hash value with three dots ('…').

3.2.2 File : For selecting and then hashing one individual file. Simply click the 'Select File'

button, navigate to the file (or drag and drop a file onto the program), and the hash will be

QuickHash GUI User Manual (c) 2011 - 2015 Page 7 of 18

Illustration 2: Hashes values dynamically recomputing in Text tab

computed. There are no size limits (since v2.1 at least – earlier versions struggled only if the file

was a) larger than 4Gb and b) being hashed with SHA256 or SHA512) other than those that are

imposed by the filesystem storing the file which QuickHash has no control over, of course. So there

is no need to worry about 4Gb boundaries and so on.

As of v2.6.2, an “Expected Hash Value” field allows the user to paste an existing hash value

(perhaps computed by another tool) and QuickHash will compare the generated hash of the file

against the one supplied by the user. An alert will be displayed if the hashes do not match. To cancel

the comparison, replace the hash value with three dots ('…').

Unicode in the filename or file content is also dealt with automatically.

As with text, the resulting hash can be re-computed simply by choosing a different algorithm in the

radio box selection. Larger files will display a message saying “Recomputing hash”.

This functionality is useful, for example, when you have written a document of some kind and

finished it and you want to send it to someone and be certain the file they receive from you is the

same as when you finished and sent it. Or you need to send a file that someone else has created and

you want to make sure of its integrity.

On Linux systems, everything is a file so this can include physical disks (e.g. /dev/sda) or

QuickHash GUI User Manual (c) 2011 - 2015 Page 8 of 18

Illustration 3: The 'File' tab showing a computed hash of a file

logical drives (/dev/sda1) if QuickHash is run with root access. Disk hashing is also available

for Windows, but there is a special tab in the Windows version for that task – see Disk Hashing,

below.

With regard to forensic images; it is sometimes useful to hash the individual chunks of a forensic

image if forensic software states a problem with an image, to try and diagnose if one particular

chunk has not been moved or copied correctly from a master copy. However, do not confuse this

functionality with the total inability of QuickHash to compute the internally computed hash of

the data inside the image. At the moment, QuickHash can not be used to verify E01 image sets, or

AFF, or even DD sequences. In other words, if the user navigates to the first file of a chunked image

set (such as a chunked dd image or an E01 image) the resulting hash will be that of the chosen

image chunk only, not of the acquired data that sits inside the entire forensic image spanning

multiple chunks. To verify an actual complete forensic image, please use forensic software like X-

Ways Forensics, EnCase, FTK, ewfacquire, Sleuthkit and so on.

3.2.3 FileS : For hashing multiple files in a directory (aka 'folder') recursively. Put simply, choose a

directory and QuickHash will find all the files below that directory and inside its child directories

and compute the hashes for all of the files, outputting the results to screen.

There are several options in this tab :

1. Saved to a CSV log file?

2. Saved to an HTML log file?

3. Ignoring sub-directories

4. Flag Duplicates?

5. Hidden folders too?

Options 1 -5 require the user to tick the box prior to starting the scan.

QuickHash GUI User Manual (c) 2011 - 2015 Page 9 of 18

The “Save to CSV?” and “Save to HTML?” options enable the content of the completed

display grid to be saved permanently with a view to the user then being able to use the power of

spreadsheet software to sort, search and filter the data (if saved as CSV), or to present the data more

neatly by e-mail or using a web browser (if saved as HTML) like Mozilla Firefox, Google Chrome

and so on.

The “Ignoring sub-directories?” enables the user to compute hashes of files in the root

of the chosen directory but not any of the files located in the child sub-directories that may be below

that chosen root directory.

The “Flag Duplicates?” option simply populates an extra column with information about any file

that is found to be a duplicate of another in the chosen directory structure. After hashing the files, if

this tick box is enabled AND duplicate files were found, QuickHash will ask the user if he wishes to

delete them by way of “Yes, No, Cancel”. Choosing Yes will delete the duplicate files. If in

doubt, choose “No”! The user may prefer to run the hashing once to see what files are duplicated

first and whether or not they can safely be deleted having examined the grid. If so, run the scan

again and choose “Yes” when asked if the duplicates are to be deleted.

The “Hidden Folders too?” option requires some detailed explanation. On Windows, hidden

files will be found and hashed by default in the 'Copy' tab of Quickhash but only if they live in

unhidden folders.

Files that live in hidden folders, regardless of whether the files are themselves are hidden or

unhidden, will not be found unless this option is ticked. By ticking the box however, all files,

QuickHash GUI User Manual (c) 2011 - 2015 Page 10 of 18

Illustration 4: The various options of the 'FileS' tab

hidden or unhidden, that live in folders that are either hidden or unhidden, will be found. The

screenshots below demonstrate.

The results can also be copied to the clipboard from the display grid by clicking the “Clipboard

results” button, which will be 'click-able' once a scan has finished; disabled until then.

QuickHash GUI User Manual (c) 2011 - 2015 Page 11 of 18

Illustration 5: Files with various filesystem
attributes

Illustration 6: Quickhash will ignore files in hidden folders if asked

Illustration 7: Quickhash will examine files in hidden
folders, if asked

The hashes cannot be dynamically re-computed in this tab, unlike in the first two tabs.

Drag and drop of directories is not possible in this tab either.

3.2.4 Copy : The Copy tab allows the user to select a directory containing files he wishes to copy

and a destination directory for where he wishes to copy the files to. Both source and destination

directories can be a local directory or a mapped network drive or a UNC unmapped network

address.

Having selected both directories, upon clicking 'Go', QuickHash will hash the files in the source

directory, then copy them to the destination directory (whilst concurrently reconstructing the

directory path of the original files, by default) where it then re-hashes the files to check they match

the hash values of the original computations. It is, in essence, a “forensic copy and paste”. As with

the “FileS” tab, there are options to save the results to CSV or HTML and sub-directories of the

source directory can be ignored. Also note that there is an option for the user to not have the source

directory structure rebuilt in the destination by ticking the “Don't rebuild path?” option.

There are five other options that are unique to this tab that require explanation.

1. Just LIST Directories?

2. Just LIST sub-directories and files?

3. Choose file types?

4. Don't rebuild path?

5. Copy hidden files?

Options 1 and 2 are simply for listing (thus 'LIST' is capitalised) either the directory structure of

the chosen source directory (excluding files) or for listing the names of directories AND files of the

chosen source directory but without actually hashing any of the files. This is useful when a user

needs a textual representation of a directory structure to paste into some other software or a report.

QuickHash GUI User Manual (c) 2011 - 2015 Page 12 of 18

The “Choose file types” box allows the user to specify what file types to find, hash, and

copy. So for example, if the user is only interested in .doc files, by entering just “.doc;”, only

those file types will be found and copied. Multiple extensions can be used if separated with a ';'

ONLY (no spaces). Note that this type identification is conducted by filename only – not the more

accurate file header signature analysis (which is currently not available in QuickHash).

The “Don't rebuild path?” option allows all files found in the source directory and its sub-

directories to simply be dumped in the root of the destination directory without rebuilding the

original path in the destination path. Obviously though two files of the same name cannot exist in

the same directory on the same filesystem whereas two files of the same name may exist in one

folder and any of its other subdirectories. To account for this, when this option is enabled (it is off

by default) QuickHash will check for the existence of a file with the same name in the destination

directory for each file it copies. Where found, it will rename the second, third, fourth (and so on)

instance of the file by renaming it to FileName.ext_DuplicatedNameX where X is the

counter of duplicated filenames detected. Note this is not a check of file hash based on content –

QuickHash GUI User Manual (c) 2011 - 2015 Page 13 of 18

Illustration 8: The default 'Copy' tab showing tree views (new feature as of v2.6.3)

merely filename.

The “Copy hidden files?” is disabled in the Windows version, because hidden files in both

hidden and unhidden folders are found by default with this particular tab in QuickHash (different to

the 'FileS' tab and its 'Hidden folders too?' tick box). However, in Linux and Apple Mac,

the box is enabled, due to the way that files and directories are both, in essence, 'files' on those

systems, so a hidden directory needs to be dealt with differently to a hidden file. If you want such

files when using either of those systems, tick this box. But Windows users need not be concerned

about it.

The hashes cannot be dynamically re-computed in this tab, unlike in the first two tabs.

Drag and drop of directories is not possible in this tab either.

On Windows, files that live in a folder whose length exceeds 260 characters will not be found

by QuickHash. This is due to a restriction called 'MAX_PATH' and is a MS Windows limitation. It

is not an NTFS filesystem limitation; that can allow up to 32K characters. Nor a Linux limitation,

which allows up to 4K characters.

Note, however, that if the files that are found are already near to the 260 character limit, but not

beyond it, it is likely that when copied, the path length will exceed 260 characters. QuickHash will

deal with this by implementing a filesystem bypass of MAX_PATH by use of '\\?\' prefix (see

LongPathOverride in main pascal unit). It is easier to do this for writing files but harder for

reading. Future versions of QuickHash will one day be able to read and write up to a MAX_PATH

of 32K.

3.2.5 Compare Two Files : It is commonly the case that a file exists in two different places, for

example, a backup of a file. This tab allows a user to specifically choose one file, and then hash it

against another file automatically perhaps leaving them overnight if they are large. This avoids the

need for the user to have to hash all the files in the folder of these two respective files (using the

'FileS' tab), or without the need to hash FileA first, and then manually choose FileB second using

the 'File' tab.

Results can be saved to a text file, if needed, after hashing has completed and by clicking the 'Save

QuickHash GUI User Manual (c) 2011 - 2015 Page 14 of 18

As' button. Simpler still might be to just take a screenshot.

3.2.6 Compare Directories : This enables the user to compare the file content of two directories.

The user must select one directory as the source (Dir A) and then a second to compare the source

against (Dir B). QuickHash will then hash all the files in Dir A and Dir B, storing the values in a

list in memory. When complete, it computes a hash of both the memory resident lists (which it can

do in a millisecond) and compares them. If the hash of the hash lists are the same, the two

directories must match, which avoids the need to then compare individually each hash value, value

by value. This makes QuickHash very fast at this comparison.

If, however, there is a mis-match at this stage, QuickHash then does go on to compare the hash of

each file and then alerts the user as to which files are in one directory but not the other, or which

files are found in both directories by name but are different by hash.

Note therefore it compares the binary content of two directories based on the files inside each. It

does not compare the directory structure of each. So you could have Dir A with 1000 files in it

spread across 5 different sub-directories but if those same 1000 files are all in the root of Dir B with

no sub-directories at all, QuickHash will report a match, because the file content of both directories

is the same.

Upon completion, the user can copy the content of either grid or both grids to the clipboard using

QuickHash GUI User Manual (c) 2011 - 2015 Page 15 of 18

Illustration 9: Comparing the hashes of two identical files

the two buttons in the summary panel (as of v2.6.1). Prior to completion, the buttons will be greyed

out.

3.2.7 Disks : This tab is only available in the Windows version and the user should run QuickHash

as an administrator. The functionality enables the computation of a hash for the physical disk of the

computer. Useful for comparing the value computed by one forensic tool to “another tools” i.e. that

computed by QuickHash. On modern disks, speeds of between 7Gb – 14Gb per minute have been

observed. Though speeds of 4Gb per minute are quite common and still fast compared to many

other tools.

To use the functionality, the user must click the “Launch Disk Hashing Module” button in the tab

“Disks” and he will then be presented with the following screen:

The “Start At Date” and “Start At Time” fields enable the user to schedule a start date

and time for the hashing process. This is useful for occasions when the user wants to hash the disk,

but at the time he is operating the software, something else might be doing something with the disk.

By using the scheduler, unnecessary strain on the disk components can be reduced by allowing the

QuickHash GUI User Manual (c) 2011 - 2015 Page 16 of 18

Illustration 10: The disk hashing module

other task to complete and then the hashing can begin in X minutes\hours\days.

Note that setting a schedule time is not necessary. If the fields are left at their default values,

hashing will start as normal once the user chooses a disk to hash by double clicking the entry in the

list. Only if these values are adjusted will the scheduler kick in.

To choose a disk, the user must click the “Scan for Disks \ Refresh Disk List”

button and then determine which disk in the list is the one needing to be hashed. To begin the task

of hashing, the user simply needs to double click the chosen disk and hashing will commence

(immediately if no date and time has been specified or at the time specified if the date and time has

been set by the user to a point in the future). Upon completion, the hash value will appear at the

bottom and can be saved to a text file by clicking “Save Results...”.

Note : Only SHA-1 hash values can be computed for disks, until further notice

Progress is relayed to the user by way of a reducing byte count and the speed is presented as a Gb

per minute rate. The end time and time taken is computed at the end of the process at which point

the hash is also displayed.

QuickHash GUI User Manual (c) 2011 - 2015 Page 17 of 18

Illustration 11: The disk hashing module running

3.3 Unicode

Be aware that QuickHash is Unicode aware on Linux, Apple Mac and Windows systems. It will

process files with Unicode characters in their filenames or in their content without difficulty. Note

that Windows versions prior to 2.3 were not Unicode aware.

3.4 Other tools of the same name

There are many hashing tools available – too many to mention - and they all have various strengths

and weaknesses, just as QuickHash does. This section is written to try and help with the enquiries

received that are worded along the lines of “I downloaded QuickHash following our chat the other

day but it doesn't do half the things you said it could” which, since about 2012, caused some

enquiries of my own, at which point it became clear that new projects have been developed since

QuickHash that are also called “QuickHash”!

It is important to point out, however, that QuickHash was the first tool of its kind (a graphical,

standalone, Unicode aware and cross platform hashing tool) named “QuickHash” and it was

published on Sourceforge in 2011 at http://sourceforge.net/projects/quickhash . Unfortunately, the

nature of open-source means there will always be others who might choose the same name for a

tool that does the same thing. Without trademarking the name, there is no way to prevent that

QuickHash GUI User Manual (c) 2011 - 2015 Page 18 of 18

Illustration 12: Quickhash showing Unicode awareness on Windows

http://sourceforge.net/projects/quickhash

happening. So please be advised that any other tools appearing to be called or actually being called

“QuickHash” are not the same as QuickHash GUI as available at Sourceforge at

http://sourceforge.net/projects/quickhash, for which there is only one!

QuickHash GUI User Manual (c) 2011 - 2015 Page 19 of 18

http://sourceforge.net/projects/quickhash

